Binaural sound source localization using the frequency diversity of the HRTF

نویسندگان

  • Dumidu S. Talagala
  • Wen Zhang
  • Thushara D. Abhayapala
  • Abhilash Kamineni
چکیده

The spectral localization cues contained in the head-related transfer function are known to play a contributory role in the sound source localization abilities of humans. However, existing localization techniques are unable to fully exploit this diversity to accurately localize a sound source. The availability of just two measured signals complicates matters further, and results in front to back confusions and poor performance distinguishing between the source locations in a vertical plane. This study evaluates the performance of a source location estimator that retains the frequency domain diversity of the headrelated transfer function. First, a method for extracting the directional information in the subbands of a broadband signal is described, and a composite estimator based on signal subspace decomposition is introduced. The localization performance is experimentally evaluated for single and multiple source scenarios in the horizontal and vertical planes. The proposed estimator’s ability to successfully localize a sound source and resolve the ambiguities in the vertical plane is demonstrated, and the impact of the source location, knowledge of the source and the effect of reverberation is discussed. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4864304]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying scattering theory to robot audition system: robust sound source localization and extraction

Robot audition by its own ears (microphones) is essential for natural human-robot communication and interface. Since a microphone is embedded in the head of a robot, the head-related transfer function (HRTF) plays an important role in sound source localization and extraction. Usually, from binaural input, the interaural phase difference (IPD) and interaural intensity difference (IID) are calcul...

متن کامل

Estimating the azimuth of a sound source from the binaural spectral amplitude

A computational model of auditory localization based on processing spectral amplitude cues for localizing broadband high frequency sound sources is presented. The cues extracted are binaural spectral level di erence patterns of the Head Related Transfer Functions (HRTF) corresponding to the direction of the sound source. Four di erent pattern classi ers are used to evaluate the feasibility of l...

متن کامل

The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation.

Directional properties of the sound transformation at the ear of four intact echolocating bats, Eptesicus fuscus, were investigated via measurements of the head-related transfer function (HRTF). Contributions of external ear structures to directional features of the transfer functions were examined by remeasuring the HRTF in the absence of the pinna and tragus. The investigation mainly focused ...

متن کامل

Sonic Localization Cues for Classrooms: A Structural Model Proposal

We investigate sonic cues for binaural sound localization within classrooms and present a structural model for the same. Two of the primary cues for localization, interaural time difference (ITD) and interaural level difference (ILD) created between the two ears by sounds from a particular point in space, are used. Although these cues do not lend any information about the elevation of a sound s...

متن کامل

Fast Measurement System for Spatially Continuous Individual Hrtfs

The head-related transfer function (HRTF) describes the individual perception of sound for different angles of incidence of a sound wave. The directional cues contained in the HRTF are introduced by reflection and diffraction of the sound wave at head and torso and are highly individual [1]. When hearing a binaural signal synthesized via a generic HRTF – deviating from the listener’s HRTF – loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014